Anomaly Detection Using the Knowledge-based Temporal Abstraction Method
نویسنده
چکیده
The rapid growth in stored time-oriented data necessitates the development of new methods for handling, processing, and interpreting large amounts of temporal data. One important example of such processing is detecting anomalies in time-oriented data. The Knowledge-Based Temporal Abstraction method was previously proposed for intelligent interpretation of temporal data based on predefined domain knowledge. In this study we propose a framework that integrates the KBTA method with a temporal pattern mining process for anomaly detection. According to the proposed method a temporal pattern mining process is applied on a dataset of basic temporal abstraction database in order to extract patterns representing normal behavior. These patterns are then analyzed in order to identify abnormal time periods characterized by a significantly small number of normal patterns. The proposed approach was demonstrated using a dataset collected from a real server. Keywords— Anomaly detection, Knowledge-based Temporal Abstraction, KBTA, Temporal Data Mining.ion, KBTA, Temporal Data Mining.
منابع مشابه
Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملDetection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis
Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملراهکار ترکیبی نوین جهت تشخیص نفوذ در شبکههای کامپیوتری با استفاده از الگوریتم-های هوش محاسباتی
In this paper, a novel hybrid method is proposed for intrusion detection in computer networks using combination of misuse-based and anomaly-based detection models with the aim of performance improvement. In the proposed hybrid approach, a set of algorithms and models is employed. The selection of input features is performed using shuffled frog-leaping (SFL) algorithm. The misuse detection modul...
متن کاملSeparation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image
The application of anomaly detection has been given a special place among the different processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.04804 شماره
صفحات -
تاریخ انتشار 2016